亚洲欧美日韩国产高清在线观看,久久久久av无码免费毛片‘,一本清道av高清在线看,国产精品久久久久久久久久,国产粗大猛烈进出高潮视频,亚洲中文精品久久久久久直播,99久久无码一区人妻A片竹菊,久9re只有这里精品视频,91亚洲精品久久久久久久久久久久

產(chǎn)品展示
PRODUCT DISPLAY
技術(shù)支持您現(xiàn)在的位置:首頁(yè) > 技術(shù)支持 > 在實(shí)現(xiàn)自主導(dǎo)航之前,移動(dòng)機(jī)器人都有哪些避障方法?
在實(shí)現(xiàn)自主導(dǎo)航之前,移動(dòng)機(jī)器人都有哪些避障方法?
  • 發(fā)布日期:2019-04-02      瀏覽次數(shù):1173
    • 移動(dòng)機(jī)器人是機(jī)器人的重要研究領(lǐng)域,人們很早就開(kāi)始移動(dòng)機(jī)器人的研究。

      世界上臺(tái)真正意義上的移動(dòng)機(jī)器人是斯坦福研究院(SRI)的人工智能中心于1966年到1972年研制的,名叫Shakey,它裝備了電視攝像機(jī)、三角測(cè)距儀、碰撞傳感器、驅(qū)動(dòng)電機(jī)以及編碼器,并通過(guò)無(wú)線通訊系統(tǒng)由二臺(tái)計(jì)算機(jī)控制,可以進(jìn)行簡(jiǎn)單的自主導(dǎo)航。Shakey的研制過(guò)程中還誕生了兩種經(jīng)典的導(dǎo)航算法:A*算法(the A* search algorithm)和可視圖法(the visibility graph  method)。

      雖然Shakey只能解決簡(jiǎn)單的感知、運(yùn)動(dòng)規(guī)劃和控制問(wèn)題,但它卻是當(dāng)時(shí)將AI應(yīng)用于機(jī)器人的為成功的研究平臺(tái),它證實(shí)了許多通常屬于人工智能(Aritificial Intelligence, AI)領(lǐng)域的嚴(yán)肅的科學(xué)結(jié)論。從20世紀(jì)70年代末開(kāi)始,隨著計(jì)算機(jī)的應(yīng)用和傳感技術(shù)的發(fā)展,以及新的機(jī)器人導(dǎo)航算法的不斷推出,移動(dòng)機(jī)器人研究開(kāi)始進(jìn)入快車道。

      移動(dòng)機(jī)器人智能的一個(gè)重要標(biāo)志就是自主導(dǎo)航,而實(shí)現(xiàn)機(jī)器人自主導(dǎo)航有個(gè)基本要求——避障。下面讓我們來(lái)了解一下移動(dòng)機(jī)器人的避障,避障是指移動(dòng)機(jī)器人根據(jù)采集的障礙物的狀態(tài)信息,在行走過(guò)程中通過(guò)傳感器感知到妨礙其通行的靜態(tài)和動(dòng)態(tài)物體時(shí),按照一定的方法進(jìn)行有效地避障,后達(dá)到目標(biāo)點(diǎn)。

      實(shí)現(xiàn)避障與導(dǎo)航的必要條件是環(huán)境感知,在未知或者是部分未知的環(huán)境下避障需要通過(guò)傳感器獲取周圍環(huán)境信息,包括障礙物的尺寸、形狀和位置等信息,因此傳感器技術(shù)在移動(dòng)機(jī)器人避障中起著十分重要的作用。避障使用的傳感器主要有超聲傳感器、視覺(jué)傳感器、紅外傳感器、激光傳感器等。
       

      移動(dòng)機(jī)器人避障常用的傳感器

      1、激光傳感器

      激光測(cè)距傳感器利用激光來(lái)測(cè)量到被測(cè)物體的距離或者被測(cè)物體的位移等參數(shù)。

      比較常用的測(cè)距方法是由脈沖激光器發(fā)出持續(xù)時(shí)間極短的脈沖激光,經(jīng)過(guò)待測(cè)距離后射到被測(cè)目標(biāo),回波返回,由光電探測(cè)器接收。根據(jù)主波信號(hào)和回波信號(hào)之間的間隔,即激光脈沖從激光器到被測(cè)目標(biāo)之間的往返時(shí)間,就可以算出待測(cè)目標(biāo)的距離。

      由于光速很快,使得在測(cè)小距離時(shí)光束往返時(shí)間極短,因此這種方法不適合測(cè)量精度要求很高的(亞毫米級(jí)別)距離,一般若要求精度非常高,常用三角法、相位法等方法測(cè)量。

      2、視覺(jué)傳感器

      視覺(jué)傳感器的優(yōu)點(diǎn)是探測(cè)范圍廣、獲取信息豐富。

      實(shí)際應(yīng)用中常使用多個(gè)視覺(jué)傳感器或者與其它傳感器配合使用,通過(guò)一定的算法可以得到物體的形狀、距離、速度等諸多信息?;蚴抢靡粋€(gè)攝像機(jī)的序列圖像來(lái)計(jì)算目標(biāo)的距離和速度,還可采用SSD算法,根據(jù)一個(gè)鏡頭的運(yùn)動(dòng)圖像來(lái)計(jì)算機(jī)器人與目標(biāo)的相對(duì)位移。

      但在圖像處理中,邊緣銳化、特征提取等圖像處理方法計(jì)算量大,實(shí)時(shí)性差,對(duì)處理機(jī)要求高。且視覺(jué)測(cè)距法檢測(cè)不能檢測(cè)到玻璃等透明障礙物的存在,另外受視場(chǎng)光線強(qiáng)弱、煙霧的影響很大。

      3、紅外傳感器

      大多數(shù)紅外傳感器測(cè)距都是基于三角測(cè)量原理。

      紅外發(fā)射器按照一定的角度發(fā)射紅外光束,當(dāng)遇到物體以后,光束會(huì)反射回來(lái),如圖所示。反射回來(lái)的紅外光線被CCD檢測(cè)器檢測(cè)到以后,會(huì)獲得一個(gè)偏移值L,利用三角關(guān)系,在知道了發(fā)射角度α,偏移距L,中心矩X,以及濾鏡的焦距f以后,傳感器到物體的距離D就可以通過(guò)幾何關(guān)系計(jì)算出來(lái)了。

      紅外傳感器的優(yōu)點(diǎn)是不受可見(jiàn)光影響,白天黑夜均可測(cè)量,角度靈敏度高、結(jié)構(gòu)簡(jiǎn)單、價(jià)格較便宜,可以快速感知物體的存在,但測(cè)量時(shí)受環(huán)境影響很大,物體的顏色、方向、周圍的光線都能導(dǎo)致測(cè)量誤差,測(cè)量不夠。

      4、超聲波傳感器

      超生波傳感器檢測(cè)距離原理是測(cè)出發(fā)出超聲波至再檢測(cè)到發(fā)出的超聲波的時(shí)間差,同時(shí)根據(jù)聲速計(jì)算出物體的距離。由于超聲波在空氣中的速度與溫濕度有關(guān),在比較的測(cè)量中,需把溫濕度的變化和其它因素考慮進(jìn)去。超聲波傳感器一般作用距離較短,普通的有效探測(cè)距離都在5-10m之間,但是會(huì)有一個(gè)小探測(cè)盲區(qū),一般在幾十毫米。由于超聲傳感器的成本低,實(shí)現(xiàn)方法簡(jiǎn)單,技術(shù)成熟,是移動(dòng)機(jī)器人中常用的傳感器。

      機(jī)器人避障算法有哪些?

      目前移動(dòng)機(jī)器人的避障根據(jù)環(huán)境信息的掌握程度可以分為障礙物信息已知、障礙物信息部分未知或*未知兩種。

      傳統(tǒng)的導(dǎo)航避障方法如可視圖法、柵格法、自由空間法等算法對(duì)障礙物信息己知時(shí)的避障問(wèn)題處理尚可,但當(dāng)障礙信息未知或者障礙是可移動(dòng)的時(shí)候,傳統(tǒng)的導(dǎo)航方法一般不能很好的解決避障問(wèn)題或者根本不能避障。

      而實(shí)際生活中,絕大多數(shù)的情況下,機(jī)器人所處的環(huán)境都是動(dòng)態(tài)的、可變的、未知的,為了解決上述問(wèn)題,人們引入了計(jì)算機(jī)和人工智能等領(lǐng)域的一些算法。同時(shí)得益于處理器計(jì)算能力的提高及傳感器技術(shù)的發(fā)展,在移動(dòng)機(jī)器人的平臺(tái)上進(jìn)行一些復(fù)雜算法的運(yùn)算也變得輕松,由此產(chǎn)生了一系列智能避障方法,比較熱門的有:遺傳算法、神經(jīng)網(wǎng)絡(luò)算法、模糊算法等,下面分別加以介紹。

      1、基于遺傳算法的機(jī)器人避障算法

      遺傳算法(genetic algorithm ,簡(jiǎn)稱GA )是計(jì)算數(shù)學(xué)中用于解決*化的搜索算法,是進(jìn)化算法的一種。進(jìn)化算法是借鑒了進(jìn)化生物學(xué)中的遺傳、突變、自然選擇以及雜交等現(xiàn)象而發(fā)展起來(lái)的。 遺傳算法采用從自然進(jìn)化中抽象出來(lái)的幾個(gè)算子對(duì)參數(shù)編碼的字符串進(jìn)行遺傳操作 ,包括復(fù)制或選擇算子(Reproduction or Select)、交叉算子(Crossover)、變異算子(Mutation)。

      遺傳算法的主要 優(yōu)點(diǎn) 是:采用群體方式對(duì)目標(biāo)函數(shù)空間進(jìn)行多線索的并行搜索,不會(huì)陷入局部極小點(diǎn);只需要可行解目標(biāo)函數(shù)的值,而不需要其他信息,對(duì)目標(biāo)函數(shù)的連續(xù)性、可*沒(méi)有要求,使用方便;解的選擇和產(chǎn)生用概率方式,因此具有較強(qiáng)的適應(yīng)能力和魯棒性。

      2、基于神經(jīng)網(wǎng)絡(luò)算法的機(jī)器人避障方法

      神經(jīng)網(wǎng)絡(luò)(neural network,縮寫NN),是一種模仿生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)能在外界信息的基礎(chǔ)上改變內(nèi)部結(jié)構(gòu),是一種自適應(yīng)系統(tǒng)。人工神經(jīng)網(wǎng)絡(luò)通常通過(guò)一個(gè)基于數(shù)學(xué)統(tǒng)計(jì)學(xué)類型的學(xué)習(xí)方法優(yōu)化,是一種非線性統(tǒng)計(jì)性數(shù)據(jù)建模工具,可以對(duì)輸入和輸出間復(fù)雜的關(guān)系進(jìn)行建模。

      傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃方法往往是建立一個(gè)關(guān)于機(jī)器人從初始位置到目標(biāo)位置行走路徑的神經(jīng)網(wǎng)絡(luò)模型,模型輸入是傳感器信息和機(jī)器人前一位置或者前一位置的運(yùn)動(dòng)方向,通過(guò)對(duì)模型訓(xùn)練輸出機(jī)器人下一位置或者下一位置的運(yùn)動(dòng)方向。

      可以建立基于動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)的機(jī)器人避障算法, 動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)可以根據(jù)機(jī)器人環(huán)境狀態(tài)的復(fù)雜程度自動(dòng)地調(diào)整其結(jié)構(gòu),實(shí)時(shí)地實(shí)現(xiàn)機(jī)器人的狀態(tài)與其避障動(dòng)作之間的映射關(guān)系,能有效地減輕機(jī)器人的運(yùn)算壓力。 還有研究通過(guò)使用神經(jīng)網(wǎng)絡(luò)避障的同時(shí)與混合智能系統(tǒng)(HIS)相連接,可以使移動(dòng)機(jī)器人的認(rèn)知決策避障能力和人相近。
       

      3、基于模糊控制的機(jī)器人避障算法

      模糊控制(fuzzy control)是一類應(yīng)用模糊集合理論的控制方法,它沒(méi)有像經(jīng)典控制理論那樣把實(shí)際情況加以簡(jiǎn)化從而建立起數(shù)學(xué)模型,而是通過(guò)人的經(jīng)驗(yàn)和決策進(jìn)行相應(yīng)的模糊邏輯推理,并且用具有模糊性的語(yǔ)言來(lái)描述整個(gè)時(shí)變的控制過(guò)程。

      對(duì)于移動(dòng)機(jī)器人避障用經(jīng)典控制理論建立起的數(shù)學(xué)模型將會(huì)非常粗糙,而模糊控制則把經(jīng)典控制中被簡(jiǎn)化的部分也綜合起來(lái)加以考慮。

      對(duì)于移動(dòng)機(jī)器人避障的模糊控制而言,其關(guān)鍵問(wèn)題就是要建立合適的模糊控制器,模糊控制器主要完成障礙物距離值的模糊化、避障模糊關(guān)系的運(yùn)算、模糊決策以及避障決策結(jié)果的非模糊化處理(化)等重要過(guò)程,以此來(lái)智能地控制移動(dòng)機(jī)器人的避障行為。利用模糊控制理論還可將專家知識(shí)或操作人員經(jīng)驗(yàn)形成的語(yǔ)言規(guī)則直接轉(zhuǎn)化為自動(dòng)控制策略。通常使用模糊規(guī)則查詢表,用語(yǔ)言知識(shí)模型來(lái)設(shè)計(jì)和修正控制算法。

      除此之外還有啟發(fā)式搜索算法、基于行為的路徑規(guī)劃算法、基于再激勵(lì)學(xué)習(xí)的路徑規(guī)劃算法等避障算法,也都在移動(dòng)機(jī)器人的避障研究中取得了很好的成果。
       

      展望

      隨著計(jì)算機(jī)技術(shù)、傳感器技術(shù)、人工智能的發(fā)展,移動(dòng)機(jī)器的避障及自主導(dǎo)航技術(shù)已經(jīng)取得了豐碩的研究成果,應(yīng)用領(lǐng)域也在不斷地?cái)U(kuò)大,應(yīng)用復(fù)雜程度也越來(lái)越高。移動(dòng)機(jī)器人的自主尋路要求已經(jīng)從之前簡(jiǎn)單的功能實(shí)現(xiàn)提升到可靠性、通用性、率上來(lái),因此對(duì)其相關(guān)技術(shù)提出了更高的要求。
       


       

      然而至今沒(méi)有任何一種方法能夠在任意環(huán)境使機(jī)器人進(jìn)行有效地避障,如何克服相關(guān)算法的局限性是今后工作的研究方向之一??梢钥闯霾还苁莻鹘y(tǒng)算法還是新興的智能算法都有其適用與不適用的環(huán)境,通過(guò)傳統(tǒng)算法與智能算法及智能算法之間的相互融合,克服單個(gè)算法的缺陷,增強(qiáng)整體的適用性,現(xiàn)在已經(jīng)有很多這方面的研究,以后仍將是研究熱點(diǎn)之一。

    聯(lián)系方式
    • 電話

      400-800-6709

    • 傳真

    在線客服
    额济纳旗| 图片| 旬邑县| 延庆县| 临夏县| 红原县| 喀喇沁旗| 历史| 师宗县| 新平| 宜兰县| 赤峰市| 绥化市| 舞阳县| 营山县| 连州市| 清丰县| 玉屏| 凭祥市| 偏关县| 湾仔区| 汉川市| 寿阳县| 精河县| 深水埗区| 渝中区| 高要市| 千阳县| 奈曼旗| 固镇县| 宣恩县| 桑植县| 密云县| 平遥县| 宣武区| 银川市| 林州市| 石景山区| 松潘县| 广西| 潢川县|